MATHS CLASS XII (Relations and Functions) Continuation.....

General direction for the students:-Whatever be the notes provided, everything must be copied in the Maths Copy and then do the Home work in the same Copy.

TYPES OF FUNCTIONS

1. One-One Function (Injective)

A function $f: X \to Y$ is said to be one-one function, if all the elements of X having different images in Y.

To Prove one-one,

if
$$x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$$
, $\forall x_1, x_2 \in X$ or $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$, $\forall x_1, x_2 \in X$

2. Many-One function

A function $f: X \to Y$ is said to be Many-one function, iff two or more elements of X have same image in Y.

3. Onto function (Surjective)

A function $f: X \to Y$ is said to be Onto function, iff each elements of Y is the image of atleast one element of X. Here Codomain of f = Range of f.

To Prove f is Onto,

either for every $y \in Y$, there exists at least one $x \in X$ such that y = f(x) or f(X) = Y.

4. Into function

A function $f: X \to Y$ is said to be Into function, iff there exist at least one element of Y which is not the image of any element of X. Here Range of f is a proper subset of Codomain.

5. One-One correspondence (Bijective)

A function $f: X \to Y$ is said to be Bijective function, iff f is both One-one and Onto.

6. Identity function on set A (I_A)

A function $f: A \to A$ is said to be Identity function, if $f(x) = x \ \forall \ x \in A$.

7. Constant function

A function $f: A \to B$ is said to be Constant function $f(a) = b \ \forall \ a \in A \ and \ b \ is \ fixed \ in \ B$.

8. Equal function

Two functions f and g are equal if (i) $D_f = D_g$ (ii) $f(x) = g(x) \quad \forall \ x \in D_f \ or \ D_g$.

9. Types of Monotonic function

(i) Increasing function

If a function f is an increasing function , if $x_1 < x_2 \implies f(x_1) \le f(x_2) \quad \forall \ x_1$, $x_2 \in D_f$.

(ii) Strictly Increasing function

If a function f is an strictly increasing function , if $x_1 < x_2 \implies f(x_1) < f(x_2) \quad \forall \ x_1$, $x_2 \in D_f$.

(iii) Decreasing function

If a function f is a decreasing function , if $x_1 > x_2 \implies f(x_1) \ge f(x_2) \quad \forall \ x_1$, $x_2 \in D_f$.

(iv) Strictly Decreasing function

If a function f is a strictly decreasing function , if $x_1 > x_2 \implies f(x_1) > f(x_2) \quad \forall \ x_1$, $x_2 \in D_f$.

**A strict monotonic function is always one-one.

10. Even and Odd function

If a function f is an Even function iff f(-x) = f(x) $\forall x \in D_f$.

If a function f is an Odd function iff f(-x) = -f(x) $\forall x \in D_f$.

RESULTS

- **1..** If A and B are non empty finite sets containig m and n elements respectively, then
 - i) the number of functions from $A ext{ to } B ext{ is } n^m$.
 - ii) the number of One-One functions from A to B is
 - (a) nP_m , if $m \le n$.
 - (b) 0 , if m > n.
 - iii) the number of Onto functions from A to B is
 - (a) $\sum_{r=1}^{n} (-1)^{n-r} . nC_r . r^m$, if $n \leq m$.
 - (b) 0 , n > m.

Particular cases

- (a) If n = 2 and $m \ge 2$, then the number of Onto functions from A to B is $2^m 2$.
- (b) If n = 3 and $m \ge 3$, then the number of Onto functions from A to B is $3^m 3(2^m 1)$.
- iv) the number of One-One Onto functions from A to B is
 - (a) (m)! , if m = n.
 - (b) 0 , if $m \neq n$.